Рассмотрим задания, в которых дан график производной функции и требуется найти, в какой точке данного отрезка эта функция принимает наибольшее значение.

№1

На рисунке изображён график производной функции f(x), определённой на интервале (-14;8). В какой точке отрезка [-11;-8] функция f(x) принимает наибольшее значение?

Решение:

po-grafiku-proizvodnoj-najti-naibolshee-znachenie-funkciiВыделяем отрезок [-11;-8].

На этом отрезке производная f'(x) принимает положительные значения.

Следовательно, функция f(x) на этом отрезке возрастает, то есть бо́льшему значению аргумента соответствует бо́льшее значение функции:

x1,x2 ∈[-11;-8], x2>x1, ⇒ f(x2)>f(x1).

Поэтому наибольшее значение функция f(x) на отрезке принимает при наибольшем значении аргумента, то есть на правом конце отрезка, при x=-8.

Ответ: -8.

№2

На рисунке изображён график производной функции f(x), определённой на интервале (-7;9). В какой точке отрезка [4;8] функция f(x) принимает наибольшее значение?

Решение:

grafik-proizvodnoj-najti-naibolshee-znachenie-funkciiВыделяем отрезок [4;8].

Так как этом отрезке производная f'(x)<o, то функция f(x) на [4;8] убывает, то есть бо́льшему значению аргумента соответствует меньшее значение функции:

x1,x2 ∈[4;8], x2>x1, ⇒ f(x2)<f(x1).

Поэтому наибольшее значение f(x) принимает в этом случае при наименьшем значении аргумента, то есть на левом конце отрезка, при x=4.

Ответ: 4.

№3

Функция y=f(x) определена на промежутке (-5;9). На рисунке изображён график её производной. Найти абсциссу точки, в которой функция y=f(x) принимает наибольшее значение.

Решение:

najti-abscissu-funkciya-prinimaet-naibolshee-znachenieВ точке с абсциссой x=6 производная меняет знак с плюса на минус.

Следовательно, x=6 — точка максимума.

Производная f'(x) существует на всём интервале (-5;9), следовательно, функция f(x) непрерывна на (-5;9).

Если непрерывная функция f(x) имеет на заданном интервале (a;b) только одну точку экстремума xo и это точка максимума, то на (a;b) функция принимает своё наибольшее значение в точке xo.

Таким образом, функция f(x) на интервале (-5;9) принимает наибольшее значение в точке x=6.

Ответ: 6.

№4

Функция y=f(x) определена и непрерывна на отрезке [-1;9]. На рисунке изображён график её производной. Найти точку xo, в которой функция принимает наибольшее значение, если f(-1)≥f(9).

Решение:

najti-tochku-v-kotoroj-funkciya-prinimaet-naibolshee-znachenieНа промежутках (-1;3) и (8;9) производная f'(x)>0, поэтому на этих промежутках функция f(x) возрастает.

На промежутке (3;9) производная f'(x)<0, поэтому на (3;9) функция f(x) убывает.

Так как функция определена и непрерывна на отрезке [-1;9], то точки -1, 3, 8 и 9 можно включать в промежутки монотонности.

Следовательно, на отрезках [-1;3] и [8;9] функция f(x) возрастает, на отрезке [3;8] — убывает.

На промежутках возрастания наибольшее значение функция принимает на правом конце отрезка. На [-1;3]  наибольшее значение f(x) принимает в точке x=3 (точке максимума), на [8;9] — в точке x=9.

Так как на [-1;3] f(x) возрастает, то f(3)>f(-1). По условию, f(-1)≥f(9), значит f(3)>f(9).

Таким образом, наибольшее значение функции f(x) принимает в точке x=3.

Ответ: 3.

Ваш отзыв , 16 Авг 2021

Ваш отзыв