Рассмотрим задания из №6 ЕГЭ, в которых по графику функции требуется определить точки, в которых производная положительна либо отрицательна.

№1

На рисунке изображён график дифференцируемой функции y=f(x). На оси абсцисс отмечены восемь точек: x1, x2 ,x3, x4, … , x8. Среди этих точек найдите все точки, в которых производная функции f(x) положительна. В ответе укажите количество найденных точек.

tochki-v-kotoryh-proizvodnaya-polozhitelna

Решение:

Производная функции f'(x) положительна там, где функция y=f(x) возрастает:

f'(x)>0, если f(x) возрастает.

Выделяем промежутки возрастания функции y=f(x) и определяем количество точек, принадлежащих этим промежуткам.

Промежуткам возрастания функции y=f(x) принадлежат три точки:  x2, x5 и x6.

Значит, производная функции в этих трёх точках положительна:

f'(x2)>0,

f'(x5)>0,

f'(x6)>0.

Ответ: 3.

№2

ochki-v-kotoryh-proizvodnaya-otricatelnaНа рисунке изображён график функции y=f(x) и отмечены девять точек на оси абсцисс: x1, x2 ,x3, x4 …x8, x9. В скольких из этих точек производная функции f(x) отрицательна?

Решение:

Производная функции f'(x) отрицательна там, где функция y=f(x) убывает:

f'(x)<0, если f(x) убывает.

Выделяем промежутки убывания функции y=f(x) и определяем количество точек, принадлежащих этим промежуткам.

Промежуткам убывания функции y=f(x) принадлежат четыре точки:  x3, x4, x7 и x8. Значит, производная в этих четырёх точках отрицательна:

f'(x3)<0, f'(x4)<0, f'(x7)<0, f'(x8)<0.

Ответ: 4.

№3

kolichestvo-celyh-tochek-proizvodnaya-polozhitelnaНа рисунке изображен график функции y=f(x), определенной на интервале (−6; 12). Определите количество целых точек, в которых производная функции положительна.

Решение:

Производная функции f'(x) положительна там, где функция y=f(x) возрастает.

Выделяем промежутки возрастания.

Целые точки, входящие в промежутки возрастания: -5; -4; -3; 4; 5; 6; 7; 8; 9.

Всего девять точек.

Ответ: 9.

Ваш отзыв , 23 Июн 2021

Ваш отзыв