Рассмотрим задания, в которых требуется найти для функции точки максимума на графике производной.
Важно внимательно читать условие. Точки минимума и максимума функции на графике функции находим иначе!
№1
На рисунке изображён график функции y=f'(x) — производной функции f(x), определённой на интервале (-3;9 ). Найти точку максимума функции f(x).
Решение:
В точке максимума производная непрерывной функции обращается в нуль и при переходе через точку максимума знак производной меняется с плюса на минус.
Соответственно, график производной в точке максимума пересекает ось абсцисс сверху вниз.
В данном случае точкой максимума функции f(x) является точка с абсциссой x=3.
Ответ: 3.
№2
На рисунке изображён график функции y=f'(x) — производной функции f(x), определённой на интервале (-14;9). Определить количество точек максимума функции f(x).
Решение:
В точках максимума производная меняет свой знак с плюса на минус.
График производной при переходе через точку максимума пересекает ось абсцисс сверху вниз.
График производной y=f'(x) данной функции пересекает ось Ox в двух точках. Значит, функция f(x) имеет две точки максимума.
Ответ: 2.
№3
На рисунке изображён график функции y=f'(x) — производной функции f(x), определённой на интервале (-9;14). Найти количество точек максимума функции f(x) на отрезке [-6;13].
Решение:
Выделяем рассматриваемый отрезок [-6;13].
В точках максимума функции f(x) график её производной f'(x) пересекает ось Ox сверху вниз.
На отрезке [-6;13] график производной данной функции пересекает ось абсцисс в двух точках. Следовательно, на этом отрезке функция f(x) имеет две точки максимума.
Ответ: 2.