Рассмотрим задания, в которых требуется найти для функции точки максимума на графике производной.

Важно внимательно читать условие. Точки минимума и максимума функции на графике функции находим иначе!

№1

На рисунке изображён график функции y=f'(x) — производной функции f(x), определённой на интервале (-3;9 ). Найти точку максимума функции f(x).

tochka-maksimuma-na-grafike-proizvodnoj

Решение:

В точке максимума производная непрерывной функции обращается в нуль и при переходе через точку максимума знак производной меняется с плюса на минус.

Соответственно, график производной в точке максимума пересекает ось абсцисс сверху вниз.

В данном случае точкой максимума функции f(x) является точка с абсциссой x=3.

Ответ: 3.

№2

На рисунке изображён график функции y=f'(x) — производной функции f(x), определённой на интервале (-14;9). Определить количество точек максимума функции f(x).

tochki-maksimuma-na-grafike-proizvodnoj

Решение:

В точках максимума производная меняет свой знак с плюса на минус.

График производной при переходе через точку максимума пересекает ось абсцисс сверху вниз.

График производной y=f'(x) данной функции пересекает ось Ox в двух точках. Значит, функция f(x) имеет две точки максимума.

Ответ: 2.

№3

На рисунке изображён график функции y=f'(x) — производной функции f(x), определённой на интервале (-9;14). Найти количество точек максимума функции f(x) на отрезке [-6;13].

kolichestvo-tochek-maksimuma-na-grafike-proizvodnoj

Решение:

Выделяем рассматриваемый отрезок [-6;13].

В точках максимума функции f(x) график её производной f'(x) пересекает ось Ox сверху вниз.

На отрезке [-6;13] график производной данной функции пересекает ось абсцисс в двух точках. Следовательно, на этом отрезке функция f(x) имеет две точки максимума.

Ответ: 2.

Ваш отзыв , 03 Июл 2021

Ваш отзыв